Path length enhancement in disordered media for increased absorption.

نویسندگان

  • Rajeshkumar Mupparapu
  • Kevin Vynck
  • Tomas Svensson
  • Matteo Burresi
  • Diederik S Wiersma
چکیده

We theoretically and numerically investigate the capability of disordered media to enhance the optical path length in dielectric slabs and augment their light absorption efficiency due to scattering. We first perform a series of Monte Carlo simulations of random walks to determine the path length distribution in weakly to strongly (single to multiple) scattering, non-absorbing dielectric slabs under normally incident light and derive analytical expressions for the path length enhancement in these two limits. Quite interestingly, while multiple scattering is expected to produce long optical paths, we find that media containing a vanishingly small amount of scatterers can still provide high path length enhancements due to the very long trajectories sustained by total internal reflection at the slab interfaces. The path length distributions are then used to calculate the light absorption efficiency of media with varying absorption coefficients. We find that maximum absorption enhancement is obtained at an optimal scattering strength, in-between the single-scattering and the diffusive (strong multiple-scattering) regimes. This study can guide experimentalists towards more efficient and potentially low-cost solutions in photovoltaic technologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Broadband Coherent Enhancement of Transmission and Absorption in Disordered Media.

Spatial modulation of the incident wave front has become a powerful method for controlling the diffusive transport of light in disordered media; however, such interference-based control is intrinsically sensitive to frequency detuning. Here, we show analytically and numerically that certain wave fronts can exhibit strongly enhanced total transmission or absorption across bandwidths that are ord...

متن کامل

Fabrication of Organic Solar Cells with Branched Cauliflower-Like Nano Structures as a Back Electrode Replicated from a Natural Template of Cicada Wing Patterns

Nanostructures of noble metal materials have been used in organic solar cells for enhancement of performance and light trapping. In this study, we have introduced branched silver cauliflower-like nanopatterns as sub-wavelength structured metal grating in organic solar cells. Self-assembled fabrication process of branched nanopatterns was carried out on a bio-template of cicada wing nanonipple a...

متن کامل

Disordered, strongly scattering porous materials as miniature multipass gas cells.

We investigate the interaction of light and gas in strongly scattering nano- and macroporous media. Manufacturing and structural characterization of ZrO(2), Al(2)O(3) and TiO(2) ceramics with different pore sizes, measurements of optical properties using photon time-of-flight spectroscopy, and high-resolution laser spectroscopy of O(2) at 760 nm are reported. We show that extreme light scatteri...

متن کامل

Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications.

Optical properties are numerically investigated for vertically aligned silicon nanowire arrays with three types of structural randomness, i.e., random position, diameter, and length. Nanowire arrays with random position show slight absorption enhancement, while those with random diameter or length show significant absorption enhancement, which is attributed to the stronger optical scattering in...

متن کامل

Comparison of the 'glory' with coherent backscattering of light in turbid media

The 'glory' results from light scattering of single, sub-millimetre to millimetre-sized spheres in the exact backscattering direction. The so-called coherent backscattering by disordered media is the intensity enhancement in the very same direction due to the interference between each light path and its reversed path. This pair of paths always exists in multiple-scattering media. The two phenom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 23 24  شماره 

صفحات  -

تاریخ انتشار 2015